
Eur. Phys. J. B 41, 525–533 (2004)
DOI: 10.1140/epjb/e2004-00346-y THE EUROPEAN

PHYSICAL JOURNAL B

Dynamical solutions of a quantum Heisenberg spin glass model

M. Bechmanna and R. Oppermann

Institut für Theoretische Physik und Astrophysik, Universität Würzburg, 97074 Würzburg, Federal Republic of Germany

Received 13 July 2004
Published online 5 November 2004 – c© EDP Sciences, Società Italiana di Fisica, Springer-Verlag 2004

Abstract. We consider quantum-dynamical phenomena in the SU(2), S = 1/2 infinite-range quantum
Heisenberg spin glass. For a fermionic generalization of the model we formulate generic dynamical self-
consistency equations. Using the Popov-Fedotov trick to eliminate contributions of the non-magnetic
fermionic states we study in particular the isotropic model variant on the spin space. Two complementary
approximation schemes are applied: one restricts the quantum spin dynamics to a manageable number of
Matsubara frequencies while the other employs an expansion in terms of the dynamical local spin suscep-
tibility. We accurately determine the critical temperature Tc of the spin glass to paramagnet transition.
We find that the dynamical correlations cause an increase of Tc by 2% compared to the result obtained in
the spin-static approximation. The specific heat C(T ) exhibits a pronounced cusp at Tc. Contradictory to
other reports we do not observe a maximum in the C(T )-curve above Tc.

PACS. 75.10.Nr Spin glass and other random models – 75.10.Jm Quantized spin models

1 Introduction

Theoretical models of spin glass systems, among which the
best investigated is certainly the infinite-range Ising spin
glass (SK model) [1], are well known for their conceptual
difficulties due to peculiarities of the ordered phase. At-
tempts of explicit solutions generally lead to severe numer-
ical challenges. The infinite-range Heisenberg model, also
known as the Quantum-SK model, is additionally com-
plicated by the presence of quantum-dynamical correla-
tions, even in the high-temperature phase. Realizations of
Heisenberg spin glasses are discussed at length for exam-
ple in the review by Binder and Young [2], emphasizing
the role played by different types of anisotropy in contrast
to the isotropic model.

Theorists have been looking at the infinite-range
Heisenberg spin glass model from different angles: the
quantum-dynamical self-consistency problem was first
formulated by Bray and Moore in 1980 [3] and the
corresponding TAP-equations have been derived by
Sommers [4,5]. Effects of external fields and anisotropy
were also investigated [6]. In these works explicit cal-
culations relied on the spin-static approximation. Later,
quantum-dynamical correlations were taken into account,
for instance by means of a Quantum Monte Carlo tech-
nique in the paramagnetic phase [7] or by exact diag-
onalization of finite systems [8]. A different approach
considers the SU(N)-generalization of the infinite range
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Heisenberg spin glass which can be solved exactly in the
limit N → ∞ [9–11].

There are physically fascinating and further reach-
ing questions concerning the interplay of frustrated mag-
netism and other interactions. The competition between
the Heisenberg spin glass interaction, Kondo-coupling,
and transport, for instance, leads to non-Fermi liquid be-
havior [12]. Despite the fact that such highly ambitious
questions have been and continue to be addressed suc-
cessfully, there remain many not yet resolved basic prob-
lems even in the infinite-range Heisenberg spin glass model
alone.

This article is organized as follows. In Section 2 we
introduce the fermionic model Hamiltonian and briefly
sketch the dynamical spin glass decoupling procedure.
We formulate general self-consistency equations for the
fermionic SU(2), S = 1/2 infinite range spin glass model.
Section 3 concentrates on the isotropic Heisenberg spin
glass on the spin space which is contained in the gen-
eral model as a special case. After a short digression
to the spin-static approximation in Section 3.1 we ap-
ply in Section 3.2 the “dynamical approximation” which
restricts the quantum spin dynamics to a feasible num-
ber of bosonic Matsubara frequencies. We accurately lo-
cate the paramagnet to spin glass phase transition in Sec-
tion 3.2.1 and present our results for the specific heat
in Section 3.2.2. In order to support our results we ad-
ditionally employ a perturbative expansion of the self-
consistency equations in Section 3.3.
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2 Formulation of the general dynamical
self-consistency problem

2.1 Model definition and effective action

We consider the grand-canonical Hamiltonian

K =
1

2
√

N

∑

i�=j,ν

Jν
ijS

ν
i Sν

j −
∑

i,ν

hνSν
i − µ

∑

i,σ

a†
iσaiσ, (1)

where the latin indices label the N lattice sites and
ν = {x, y, z} denote the spatial directions. With the usual
fermionic construction operators a† and a and the Pauli
matrices σν , the spin 1/2 operators are represented by

Sν
i =

∑

σσ′
a†

iσσν
σσ′aiσ′ ,

where we dropped the conventional pre-factor �/2 for con-
venience. We assume quenched disorder among the mag-
netic couplings Jν

ij = Jν
ji according to the symmetric

Gaussian distribution

Pν(Jν
ij) =

1√
2πJν

exp

(
−
(
Jν

ij

)2

2Jν
2

)
. (2)

The couplings in different spatial directions are completely
uncorrelated.

Although the Hamiltonian (1) is defined on the Fock
space it may readily be used to describe the corresponding
model on the spin space, too. For this purpose one sim-
ply has to choose the special imaginary and temperature-
dependent chemical (Popov-Fedotov-) potential

µPF = −iπT/2, (3)

which effectuates exact cancellation of contributions of the
superfluous non-magnetic (empty and doubly occupied)
local states to the partition function [13].

We shall treat the general model (1) within the
framework of imaginary time Grassmann field theory,
using the replica method along with standard decou-
pling techniques [3,14]. Due to the infinite range of
the magnetic interactions the system can be mapped
easily onto a single-site problem by virtue of a site-
global Hubbard-Stratonovich transformation. After a sad-
dle point integration of the introduced decoupling fields
the n-fold replicated and disorder averaged partition func-
tion is given by a Grassmann path integral,

[Zn]dis =
∫
D Ψ exp (−Aeff) . (4)

The resulting saddle point effective action reads

Aeff =
∫

τ

Ψ̄τ

(
(∂τ − µ)�2 +

∑

ν

hνσν

)
Ψτ

+
∑

ab,ν

J2
ν

∫

ττ ′

(
1
4

(
Q̄ab,ν

τ−τ ′

)2

− 1
2
Sa,ν

τ Q̄ab,ν
τ−τ ′ Sb,ν

τ ′

)
, (5)

where a and b are replica indices, Ψ = {Ψ↑, Ψ↓} is a
Grassmann spinor, Sν = Ψ̄σνΨ denotes the Grassmann
representation of a spin variable, and �2 is the 2× 2 iden-
tity matrix. The τ -integrations extend from 0 to β = 1/T

and the real functions Q̄ab,ν
τ−τ ′ satisfy the saddle point

conditions
Q̄ab,ν

τ−τ ′ =
〈
Sa,ν

τ Sb,ν
τ ′

〉

eff
. (6)

Note that the Hamiltonian (1) does not allow for qua-
drupolar order, i.e. 〈Sa,ν

τ Sb,µ
τ ′ 〉eff ≡ 0 for ν �= µ. Our

model differs slightly from the one with couplings of the
type Jij

∑
i�=j,ν Sν

i Sν
j that has been considered in other

work [3–8]. In the paramagnetic phase, however, both
model variants lead to identical effective actions and the
results, particularly for the critical temperature, are thus
directly comparable.

2.2 Self-consistency equations

In the present article we consider properties of the model
in the paramagnetic phase or in the spin glass phase close
to the critical temperature such that a replica-symmetric
treatment is sufficient. Hence, we introduce the compo-
nents of a single time-independent spin glass order pa-
rameter,

Q̄a�=b,ν
τ−τ ′ = qν . (7)

The time dependence of the problem merely resides
in the replica-diagonal spin-spin correlations Q̄aa,ν

τ−τ ′. We
employ the Fourier decompositions of the time-dependent
quantities,

Ψτ = T

∞∑

l=∞
Ψl e−izlτ , (8)

Q̄aa,ν
τ−τ ′ =

∞∑

m=−∞
q̃ν
m e−iωm(τ−τ ′), (9)

where zl and ωm denote fermionic and bosonic Matsubara
frequencies, respectively. The real Fourier coefficients
q̃ν
m = q̃ν

−m = q̃ν (ωm) are the central quantities in our
formulation of the theory. These parameters are closely
related to the local dynamical spin susceptibility:

χν
m = χν (ωm) = β (q̃ν

m − qνδm,0) . (10)

By means of a second decoupling step the interacting
part of the effective action (5) is rendered linear in the
spin variables which permits the Gaussian integration of
the Grassmann fields. For each spatial direction we in-
troduce a replica-global decoupling field zν as well as a
number of replica-local decoupling fields. The latter group
into “static” fields yν,0 and “dynamical” fields y±

ν,m≥1 de-
coupling spin-spin interactions which are diagonal and off-
diagonal in the fermionic frequency space, respectively.

This dynamical decoupling procedure leads to a system
of non-interacting particles in the presence of an effective
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dynamical potential V. In the space of the fermionic fre-
quencies zl, V takes the form of a non-diagonal Toeplitz-
structured matrix defined by (for the sake of better read-
ability we drop the replica indices from now)

(V)l′l =






vm, l′ = l + m, m > 0,

v0, l′ = l,

v†
m, l′ = l − m, m > 0,

(11)

where the entries vm themselves are 2×2 matrices in spin
space,

vm =
∑

ν

σνHν
m. (12)

Here the static effective magnetic fields are given by

Hν
m=0 = hν + Jν

(√
qν zν +

√
q̃ν
0 − qν yν,0

)
, (13)

whereas the dynamical effective fields are complex and
read

Hν
m≥1 = Jν

√
q̃ν
m

2
(
y+

ν,m + i y−
ν,m

)
. (14)

As an auxiliary quantity we define the local one-
particle Green’s function in the presence of a particular
configuration of these effective fields,

Γ =
(
G−1

0 + V
)−1

, (15)

where (
G−1

0

)
l′l = (izl + µ) δl′,l�2 (16)

is the inverse of the Green’s function of the non-interacting
system (i.e. Jν = 0 and hν = 0). We condense the notation
by the use of a space saving abbreviation for the Gaussian
integral operator,

∫ G

x

f(x) =
1√
2π

∫ ∞

−∞
dx exp

(
−x2

2

)
f(x). (17)

Furthermore, we introduce the following shorthand nota-
tions for the multiple integrations over all occurring z-type
and y-type decoupling fields:

∫ G

z

=
∏

ν

∫ G

zν

, (18)

∫ G

y

=
∏

ν




∫ G

yν,0

∏

m≥1

∫ G

y+
ν,m

∫ G

y−
ν,m



 . (19)

Within the replica method, the disorder-averaged free
energy per spin, f , is obtained by virtue of the relation

βf = − lim
n→0

[Zn]dis − 1
n

(20)

which yields

βf = −
∑

ν

β2Jν
2

4

(
q2
ν −

∑

m

(q̃ν
m)2

)
−
∫ G

z

ln Φ, (21)

where Φ is given by

Φ =
∫ G

y

W. (22)

The weight function

W = det
(
Γ−1

)
/ det

(
G−1

reg

)
(23)

results from the Gaussian integration of the Grassmann
fields. For W to be finite and meaningful a regularization
of the determinant in equation (23) is required. In this
work the simple choice

(
G−1

reg

)
l′l = izl δl′l �2 (24)

suffices.
By extremization of the free energy (21) with respect

to the parameters qν and q̃ν
m we finally derive the self-

consistency equations

qν =
1
β2

∫ G

z

1
Φ2

(∫ G

y

W Tr Aν
0Γ

)2

, (25)

q̃ν
m =

1
β2

∫ G

z

1
Φ

∫ G

y

W

× ((Tr Aν
mΓ) (Tr Aν

−mΓ) − Tr Aν
mΓAν

−mΓ
)
, (26)

employing the auxiliary matrices

(Aν
m)l′l = σν δl′,l+m. (27)

So far our formulation of the problem is rather general.
With a suitable choice of the model parameters Jν , hν ,
and µ equations (11–26) can be used to investigate the
Heisenberg- and XY spin glasses or the Ising spin glass in
a transversal field, both on the Fock space as well as on
the spin space.

3 The isotropic Heisenberg spin glass
on the spin space

For the rest of this article we shall be concerned with
the Heisenberg spin glass on the spin space. Therefore,
the chemical potential will be fixed to µ = µPF given by
equation (3). We only consider the isotropic model in the
sense that the distribution of the magnetic couplings (2)
are independent of the spatial direction, i.e. Jν ≡ J , and
consequently so are the spin-spin correlations, i.e. qν ≡ q
and q̃ν

m ≡ q̃m. Furthermore, we restrict ourselves to the
case of zero external fields.

In anticipation of the following sections we state the
important exact sum rule

∞∑

m=−∞
q̃m = 1 (28)

which arises from equations (6) and (9) at equal times due
to the absence of non-magnetic local states in the model
on the spin space.
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3.1 The spin-static approximation revisited

As a starting point for the quantum-dynamical calcula-
tions in Sections 3.2 and 3.3 and as a simple but instruc-
tive special case of the equations (11–26) we consider in
this section the spin-static approximation [14].

The effective potential matrix (11) can be decomposed
into a static and a dynamical part which are diagonal
and non-diagonal in the fermionic frequency space, respec-
tively:

V = Vstat + Vdyn. (29)

According to the definition (11) Vstat is a block-diagonal
matrix composed of the static fields (13), whereas Vdyn

comprises the complex dynamical fields (14).
In the spin-static approximation the time depen-

dence of the saddle point (6) is disregarded in the
self-consistency problem. Consequently, the Fourier com-
ponents q̃m �=0 are neglected in the construction of the ef-
fective potential and hence Vdyn = 0.

With the (frequency-diagonal) spin-static propagator
matrix

Γstat =
(
G−1

0 + Vstat

)−1
(30)

the weight function (23) can be calculated analytically
resulting in

Wstat =
1
2

cosh (βH0) , (31)

where

H0 =
√∑

ν

(Hν
0 )2, (32)

and the Hν
0 are given by equation (13). Since Vdyn = 0 the

Gaussian integrations over the dynamical decoupling fields
y±

ν,m≥1 in equations (22–26) become trivial. If we restrict
this discussion to the paramagnetic phase (where the spin
glass order parameter vanishes, i.e. q = 0) equation (22)
evaluates to

Φstat =
1
2
(
1 + c2

)
exp

(
c2

2

)
(33)

with the abbreviation c = βJ
√

q̃0.
The dynamical approach made in this article facilitates

the calculation of the dynamical saddle point components
q̃m even within the spin-static approximation. It can be
seen easily that the first trace term in equation (26) van-
ishes for m �= 0 for a frequency-diagonal matrix Γ. The
second trace term, however, measures the overlap of two
factors Γ that are displaced about m elements along the
diagonal which yields

1
3

∑

ν

Tr Aν
mΓstatA

ν
−mΓstat =

∞∑

l=−∞

2 (izl + µ) (izl+m + µ) − 2
3H2

0(
(izl + µ)2 − H2

0

)(
(izl+m + µ)2 − H2

0

) .

Performing the fermionic Matsubara sum and the angular
integration of the yν,0-fields (the zν-integrations become

trivial in the paramagnetic phase) finally leads to

q̃m =
1

3Φstat

∫ G

r

r2

(
cr sinh (cr)

c2r2 + π2m2
+

δm,0

2
cosh (cr)

)
.

(34)
For the static component this result constitutes a self-
consistency equation with the explicit solution

q̃0 =
−3 + β2J2 +

√
9 + 30β2J2 + β4J4

6β2J2
. (35)

It is worth mentioning that the spin-static approxima-
tion in the shape of equation (34) exactly fulfills the sum
rule (28).

3.2 Dynamical approximations

In order to study the role played by quantum-dynamical
correlations we adopt the method of dynamical approxi-
mations that was introduced recently in the context of an
itinerant spin glass model [15].

In essence, this method systematically improves the
spin-static approximation by successively taking into ac-
count the dynamical contributions to the effective poten-
tial V (11). More precisely, in the so-called dynamical ap-
proximation of order M all Fourier components q̃m with
m = {0, ..., M} are kept in the self-consistency struc-
ture. The higher frequency components are set to zero
in the construction of the effective potential. Thus, ωM

plays the role of a cut-off frequency for the dynamical
self-interaction. Technically, at order M the effective po-
tential V is approximated by a band-diagonal matrix with
band width 2(2M + 1).

The main benefit of this approximation scheme is that
all Gaussian integrations over the dynamical fields y±

ν,m>M

become trivial which allows the numerical evaluation of
the self-consistency equations (25) and (26) if the order
M is small enough.

The general strategy is to calculate a quantity within
several dynamical approximations of increasing order M .
Provided such a sequence of improved solutions reveals
sufficient convergence properties the exact full dynamical
result can be inferred by extrapolation to M → ∞.

Our method works if the finite frequency compo-
nents q̃m �=0 are small compared to q̃0 and fall off rapidly
with increasing m. This situation is met at the rela-
tively high temperatures considered in this paper. This
is not the case, however, at very low temperatures since
the Matsubara frequencies continuously move together as
the temperature decreases, and any finite number of dis-
crete frequencies will eventually collapse into the origin of
the frequency axis. Rather, a finite frequency range must
be taken into account at low temperatures, for instance
in the vicinity of the quantum critical points observed in
other systems, e.g. in itinerant Ising spin glasses [16] or in
the Ising spin glass in a transverse field. In the context of
the latter model a similar approximation technique on the
discretized imaginary time space was used earlier [17,18].
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Fig. 1. Paramagnetic solutions for the ωm = 0 part of the
local susceptibility χ0 = βq̃0 in the dynamical approximations
up to third order. Only deviations from the result in the spin-
static approximation χ0,stat (Eq. (35)) are shown. The dashed
line represents 1 − Jχ0,stat. According to equation (36) the
intersection points mark the respective approximation to the
critical temperature. To the right of the dashed line the shown
paramagnetic solutions are unstable against spin glass order.

In this article we present numerical solutions with
M ranging from M = 0 (spin-static approximation, see
Sect. 3.1) to M = 4. Up to M = 2 the occurring integra-
tions are performed by Gaussian quadrature. Due to the
high dimensionality of the resulting integration problem
for M ≥ 3 we applied a combination of Gaussian quadra-
ture and a Monte Carlo method for some less important
angular integrations. The latter is the origin of the statisti-
cal errors in the numerical data presented in the following
sections.

The sum rule (28) was derived for the full dynamical
system. Nevertheless, it was verified to be fulfilled in the
cases M = 1, 2 by high precision numerical calculations.
Although we have yet been unable to prove it analytically
for M > 0, we claim that equation (28) holds exactly in
any finite order of the dynamical approximation.

3.2.1 Solutions in the paramagnetic phase
and determination of the critical temperature

Our results for the zero-frequency part of the local sus-
ceptibility χ0 (10) obtained in the first three dynamical
approximations are presented in Figure 1. We find that
the quantum-dynamical corrections to χ0 relative to the
spin-static approximation are quantitatively remarkably
small (note the small vertical scale in Fig. 1). This fact
was already pointed out in [7]. At high temperatures we
observe quick convergence of this sequence of solutions
meaning that the quantum dynamics of the model is de-
scribed virtually exactly by taking into account only the
effects of very few Matsubara frequencies. Naturally, as
the temperature decreases the number of the relevant fre-
quencies increases.

The equilibrium critical temperature of the paramag-
net to spin glass phase transition can be determined by
means of the simple relation

J χ0 (Tc) = 1 (36)
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Fig. 2. Sequence of critical temperatures obtained within dy-
namical approximations of orders M = {0, ..., 4}. The open di-
amond and the dashed line represent the spin-static and the ex-
trapolated full dynamical result, respectively. The arrows mark
the critical temperatures obtained using the two lowest orders
of the q̃m�=0-expansion of the functional Φ (22) discussed in
Section 3.3. Inset: Extrapolation to M = ∞ (open star) hav-
ing regard to the 1/M3-like convergence. The two thin lines
indicate the statistical error.

which can be shown to hold in any order of the dy-
namical approximation by expansion of equation (25) in
powers of the order parameter q. Our solutions of equa-
tion (36) with M = {0, ..., 4} are presented in Figure 2.
From the structure of the self-consistency problem one
expects a M−3-like convergence of this sequence of Tc-
approximants (see Sect. A.1). Extrapolation of the data
to M → ∞, i.e. to the full quantum-dynamical solution,
yields Tc = (0.58912±0.00015)J . This is an increase rela-
tive to the spin-static result Tc,stat = 1/

√
3J by about 2%.

Our result can also be compared [19] to values for Tc ob-
tained by means of a Quantum Monte Carlo technique
(Tc = 0.568 J) [7] and exact diagonalization of finite sys-
tems (Tc ≈ 0.52 J) [8].

3.2.2 The specific heat

Using standard thermodynamic relations starting from
the free energy (21) we derive a useful expression for the
internal energy per site,

U =
3
2
βJ2

(
q2 −

∞∑

m=−∞
q̃ 2
m

)
, (37)

from which the specific heat

C(T ) =
dU

dT
(38)

can be obtained by numerical evaluation of the temper-
ature derivative. Within the dynamical approximation
of order M the contributions to the frequency sum in
equation (37) with |m| > M were calculated non-self-
consistently from equation (26) (or Eq. (34) in the spin-
static case M = 0).

In order to investigate the behavior of the specific heat
for T � Tc one needs solutions of equations (25) and (26)
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Fig. 3. Specific heat according to equations (38) and (37) in
the dynamical approximations with M ≤ 2 (full lines). The
cusp of the curves indicates the respective critical temperature
Tc,M . Except for M = 0, in the spin glass phase the results
are correct close to Tc,M only (see text). For comparison the
“conventional” spin-static approximation, where the frequency
sum in equation (37) is restricted to the m = 0 term, is also
shown (dashed line).

in the spin glass phase which are easily found over the
whole temperature range in the spin-static approximation.
For M > 0, however, the full integration problem is hardly
feasible. Hence, we restrict ourselves to temperatures suf-
ficiently close to Tc such that the self-consistency equa-
tions can well be approximated by expansions in powers
of Tc −T . From equation (25) we obtain for the spin glass
order parameter the linear expression

q = a (Tc − T ) , T � Tc, (39)

with the slope

a =
1
J
− d

dT
q̃0

∣∣∣∣
T=Tc

. (40)

Expansion of equation (26) in powers of q yields the sim-
plified self-consistency equation

q̃m = Rm|q=0 + cmq2, T � Tc, (41)

where Rm symbolizes the right hand side of equation (26)
and the cm are well defined expansion coefficients that
can be calculated numerically at T = Tc. By using the
solutions of equations (39) and (41) in equation (37) we
obtain curves for the specific heat in the ordered phase
that are correct at linear order of Tc − T .

Instead of expanding the self-consistency equa-
tion (25), relation (39) can be obtained as well from an
expansion of the free energy (21) in powers of q to or-
der O (q3

)
. It is known that to this order the replica-

symmetric solution is correct [20]. Effects of Parisi replica
symmetry breaking first occur if the free energy is consid-
ered to quartic order in q, and therefore they will change
the results for C(T ) only in higher than linear orders of
Tc − T .

The resulting specific heat approximants with M =
{0, ..., 2} are shown in Figure 3. Due to the apparent quick
convergence of this sequence of solutions we may safely
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Fig. 4. Paramagnetic solutions for χ0 = βq̃0 (see Fig. 1) in the
first two orders of the q̃m�=0-expansion and in the third order
dynamical approximation (plot symbols) for comparison. Inter-
sections with the dashed line mark the respective approximate
critical temperatures which are indicated in Figure 2.

draw qualitative conclusions for the limit M → ∞. In
the paramagnetic phase C(T ) monotonically increases as
the temperature is lowered. Contrary to what was previ-
ously reported by other authors [8], in our results there
is no indication of a broad maximum in the full dynami-
cal C(T )-curve above Tc. Merely the “conventional” spin-
static approximation which neglects the quantum dynam-
ics altogether and omits all m �= 0 terms in the internal
energy formula (37) has such a feature (Fig. 3).

3.3 Perturbative expansion of the self-consistency
equations in powers of the dynamical parameters q̃m�=0

To consolidate our findings of Section 3.2 we additionally
applied a completely different approximation technique to
the self-consistency problem. Viewing the spin-static the-
ory of Section 3.1 as a starting point we perturbatively ex-
pand the functional Φ (22) in powers of the dynamical sad-
dle point components q̃m �=0. Such an expansion is certainly
justified at high temperatures where q̃m �=0 
 q̃0 � 1. With
equation (21) the q̃m �=0-expansion yields an approximate
free energy which has to be extremized with respect to the
parameters q̃m. Thus, we derive simplified self-consistency
equations (see A.1) that contain only integrations over the
static decoupling fields yν,0 and are therefore easily solved
numerically.

The resulting solutions for the zero frequency suscepti-
bility and the specific heat at the two lowest orders of the
q̃m �=0-expansion O (q̃m) and O (q̃mq̃m′) are shown in Fig-
ures 4 and 5, respectively. At high temperatures the pre-
vious results of the dynamical approximation discussed in
Section 3.2 are reproduced very accurately. However, for
T/J � 1 the results obtained within the two different ap-
proximation schemes clearly differ from each other and
apparently higher orders of the q̃m �=0-expansion become
important.

From the numerical data presented in this section it
is not obvious that the two sequences of approximations,
the dynamical approximation with increasing M on one
hand, and the increasing orders of the q̃m �=0-expansion



M. Bechmann and R. Oppermann: Dynamical solutions of a quantum Heisenberg spin glass model 531

0.6 0.7 0.8 0.9 1. 1.1 1.2 1.3 1.4 1.5
0.22

0.24

0.26

0.28

0.30

0.32

0.34

���

�

� ���
�
�

� ���
�
��
�

� �

Fig. 5. Specific heat in the first two orders of the q̃m-expansion
and in the second order dynamical approximation (dashed line)
for comparison (see Fig. 3). Only solutions in the paramagnetic
phase are shown.
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Fig. 6. Check of the sum rule (28) for the two lowest orders of
the q̃m�=0-expansion indicating the quality of these approxima-
tions. Note that the higher order O (q̃mq̃m′) clearly does better
for all temperatures.

on the other hand, will eventually converge to the same
full dynamical solution. In particular, we do not know
the convergence properties of the latter perturbative se-
ries in a mathematical rigorous sense. To prevent miss-
interpretations we check in Figure 6 how accurately the
sum rule (28) is obeyed by the q̃m �=0-expansion at the two
lowest orders. At high temperatures the sum rule is ful-
filled almost exactly at order O (q̃mq̃m′) reflecting conver-
gence and the good quality of the approximation. How-
ever, we observe a substantial violation of the sum rule for
T/J � 1 providing clear evidence that in this temperature
regime this sequence of solutions is not well converged yet
at the highest order considered in this article.

Due to the small number of available orders we can not
reliably extrapolate the results of the q̃m �=0-expansion to
the full dynamical quantities. It can be seen in Figures 2
and 4, however, that our results for the zero-frequency
susceptibility presented in Section 3.2.1, and particularly
our statement for Tc are strongly supported by the present
perturbative calculation. The specific heat, on the other
hand, directly depends on the dynamical parameters q̃m �=0
and is therefore more sensible to the failure of the approx-
imation to fulfill the sum rule (28). We can nevertheless
draw qualitative conclusions. The maximum obtained in

the “conventional” spin-static approximation (see Fig. 3)
being the zeroth order of the q̃m �=0-expansion is already
very weak at order O (q̃m), and it is not present any more
at order O (q̃mq̃m′). Hence, consistently with Section 3.2.2,
we claim that there is no maximum in the full dynamical
C(T )-curve above Tc.

4 Summary and conclusion

In this article we applied standard techniques for many
body systems to the fermionic SU(2), S = 1/2 infinite
range spin glass model and formulated the general dynam-
ical self-consistency problem for the spin-spin correlations
in Section 2. Using the Popov-Fedotov potential (3) to
eliminate contributions of the non-magnetic local states
we studied the isotropic Heisenberg spin glass on the
spin space in Section 3. The results for the correspond-
ing fermionic model on the Fock space will be published
elsewhere.

In order to solve the highly coupled self-consistency
equations and particularly to make the high-dimensional
integration problem in equations (25) and (26) feasible
we used two different systematic approximation schemes.
The dynamical approximation of order M , on one hand,
describes the quantum dynamics with a limited number of
Matsubara frequencies but the corresponding saddle point
components q̃|m|≤M are dealt with exactly (Sect. 3.2). The
perturbative q̃m �=0-expansion, on the other hand, takes
into account all frequencies but only a few powers of q̃m �=0

(Sect. 3.3). In this sense the two approximation schemes
are complementary to each other.

Both approaches yield a consistent picture for the zero
frequency local spin susceptibility in the paramagnetic
phase (Figs. 1 and 4). By extrapolation of the results in
the dynamical approximation of the orders M = {0, ..., 4}
to M → ∞ (Fig. 2) we obtained the full dynamical criti-
cal temperature Tc = (0.58912±0.00015)J which is about
2% higher than the value in the spin-static approxima-
tion. We also presented results for the specific heat C(T )
(Figs. 3 and 5). In the framework of the dynamical ap-
proximation we perturbatively extended the calculations
to the spin glass phase. We can not confirm the observa-
tion of a broad maximum in the C(T )-curve above Tc as
reported recently by other authors [8]. Instead we found
a pronounced non-analyticity of C(T ) at Tc. The numeri-
cal method of reference [8] was apparently not capable to
resolve this feature, presumably due to the principal lack
of sharp phase transitions in the finite size systems con-
sidered there. Except for the shape of this anomaly at Tc

our results for C(T ) rather resemble those for a SU(N)-
generalization of the quantum Heisenberg spin glass in the
limit N → ∞ and for larger S [10,11].

The methods discussed in this article are particularly
useful to qualitatively and quantitatively describe the high
temperature phases of disordered quantum systems. There
are many open issues that can thus be addressed, e.g. real-
frequency response functions, the behavior in a magnetic
field, or questions concerning anisotropy.



532 The European Physical Journal B

This work was supported by the Deutsche Forschungs-
gemeinschaft under research project Op28/5–2 and by the
SFB410. One of us (M.B.) also wishes to acknowledge the schol-
arship granted by the University of Würzburg.

Appendix

A.1 Details of the perturbative q̃m�=0-expansion

As a consequence of the decomposition (29) of the effective
potential (11) the weight function (23) can be written as

W = Wstat expTr ln (1 + ΓstatVdyn) , (42)

where the spin-static quantities Γstat and Wstat are defined
by equations (30) and (33), respectively.

In the high temperature limit the dynamical saddle
point components vanish like q̃m �=0 ∼ 1/T 2 whereas the
zero frequency component reaches unity, q̃0 → 1. Hence,
at high temperatures the logarithm in equation (42) can
be expanded in powers of the matrix Vdyn. The trace in
equation (42) and the Gaussian integrations over the dy-
namical decoupling fields y±

ν,m≥1 in equation (22) yield a
representation of the functional

Φ = Φstat + Φ1 + Φ2 + O (q̃mq̃m′ q̃m′′) (43)

in terms of contracted diagrams.
Figure 7 displays all occurring diagrams up to the sec-

ond non-trivial order. Evaluation of these diagrams yields
the final results

Φ1 = β2J2

∫ G

r

r2
∞∑

m=1

q̃m

cr sinh (cr)
c2r2 + π2m2

(44)

and

Φ2 = β4J4

∫ G

r

r2
∞∑

m=1
m′≥m

q̃mq̃m′

(
w
[
cr, (πm)2

]
δm,m′

+ v
[
cr, (πm)2 , (πm′)2

])
(45)

with c = βJ
√

q̃0 and the functions

w [x, s] =
sechx

(x2 + s)2

(
− 3sx4 − s2x2 + 2s3

(x2 + s) (x3 + 4sx)
sinh (2x)

+
x2 − s + 4

8
cosh (2x) +

11x2 − 3s − 4
8

)
,

(46)

v [x, s, t] =
sinh x

(x2 + s) (x2 + t)

(
x2

coshx sinh x
+ tanhx

+
2sx

x2 + s
+

2tx

x2 + t
− x

(
5x2 + s + t

)
(s + t)

(x2 + s + t)2 − 4st

)
.

(47)

Expressions (43–47) correctly reproduce the high temper-
ature expansions of all quantities including order O (β4

)
.

Fig. 7. Diagrams contributing to the first two orders of the
perturbative q̃m�=0-expansion of the functional Φ defined by
equations (22) and (42). Straight lines represent the spin-static
propagator (30), wavy lines symbolize contractions of the dy-
namical effective fields (14).

In the context of the dynamical approximations dis-
cussed in Section 3.2, particularly for the extrapolation
to the full dynamical result of a quantity it is important
to know how this quantity varies with the order M for
M → ∞. This asymptotic behavior is governed by the
convergence properties of the basic functional Φ which can
be extracted if the idea of the dynamical approximation
scheme is applied to the analytical expansion (43). First
we consider the simplest contribution Φ1 (44). We write

Φ1 = Φ1,M + Φ̃1,M , (48)

where for Φ1,M the sum in equation (44) is restricted
to m = {1, ..., M}, and Φ̃1,M contains the remaining
high-frequency terms with m > M . The asymptotic M -
dependence of the latter part, which is neglected within
the dynamical approximation of order M , can be readily
evaluated. Since q̃m ∼ m−2 for large m (see, for instance,
Eq. (34)) one has the asymptotic sum

Φ̃1,M ∼
∞∑

m=M+1

1
m4

∼ M−3, M � 1. (49)

The second order contribution Φ2 (45) can be treated sim-
ilarly. Here the neglected high-frequency part Φ̃2,M com-
prises all sum terms with m′ > M . The functions (46)
and (47) vanish like w ∼ 1/s and v ∼ 1/t. Thus, all
sum terms fall off asymptotically like (m′)−4 or faster,
and hence Φ̃2,M ∼ M−3 for large M . The same argu-
ments also apply to all higher order contributions Φ̃k,M .
Therefore, the full high-frequency part of the functional Φ,
which is formally given by the k-resummation of all contri-
butions Φ̃k,M , should also vanish like M−3. Consequently,
any quantity that is derived from Φ, e.g. the critical tem-
perature (see Fig. 2), converges accordingly.
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